

gra.fun Smart Contracts Review by Ambisafe Inc.
January 2025

Oleksii Matiiasevych

1. INTRODUCTION. GraFun requested Ambisafe to perform a review of the contracts
implementing their token launch platform. The contracts in question can be identified by
the following git commit hash:

2f86394d6ca8f3294046228a9dd8c96629186eeb

There are 9 contracts/libraries in scope.

After the initial code audit, GraFun team applied a number of updates which can be
identified by the following git commit hash:

aca6300658af7653136f0f9606151b49a4585497

Additional verification was performed after that.

2. DISCLAIMER. The review makes no statements or warranties about utility of the code,

safety of the code, suitability of the business model, regulatory regime for the business
model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status.

3. EXECUTIVE SUMMARY. There are no known compiler bugs for the specified compiler

version (0.8.28), that might affect the contracts’ logic. There were 0 critical, 0 major, 0
minor, 8 informational and optimizational findings identified in the initial version of the
contracts. Most of the findings were scheduled to be fixed in the subsequent releases due
to their non-essential nature.

4. CRITICAL BUGS AND VULNERABILITIES. No critical bugs or vulnerabilities were found.

5. LINE BY LINE REVIEW. FIXED FINDINGS.

5.1. UsingMultipleLiquidityProtectionServices, line 35. Note, the
LiquidityProtection_setLiquidityProtectionService() function can override the

old pool address.

6. LINE BY LINE REVIEW. REMAINING FINDINGS.

6.1. TokenDeployer, line 13. Note, the deployToken() function uses tx.origin as part
of salt which could result in a failed deployment in case of meta tx usage.

6.2. TokenDeployer, line 23. Note, the deployProtectedToken() function uses
tx.origin as part of salt which could result in a failed deployment in case of meta
tx usage.

6.3. TokenFabric, line 25. Note, the TokenFabric contract inherits non upgradable
version of ReentrancyGuard contract, leaving it uninitialized which makes the
first call to nonReentrant more expensive than subsequent ones.

6.4. TokenFabric, line 183. Note, the migrateToPool() function relies upon and sets
isMigrated value after a potentially unsafe call to
ISwapConnector.addLiquidity(). Even though it is protected by a
nonReentrant modifier, it is recommended to always update the sensitive state
before making external calls.

6.5. UsingMultipleLiquidityProtectionServices, line 11. Note, the ProtectionData
struct is not used.

6.6. PancakeV3Connector, line 81. Note, the addLiquidity() function has a typo in
the price prediction error message, 'inorrect' should be 'Incorrect'.

6.7. ITokenFabric, line 20. Note, the isMigrated property of LiquidityState struct
should be a property of the TokenInfo instead, because migration happens only
once for all pools simultaneously.

Oleksii Matiiasevych

