
Nereus Ecosystem Contracts Code Audit by Ambisafe Inc.

July, 2022

Oleksii Matiiasevych, Artem Martiukhin

1. INTRODUCTION. Nereus Finance. requested Ambisafe to perform a code audit of the
contracts implementing Nereus staking, oracles and permissions. The contracts in
question can be identified by the following git commit hash:

5109349c5f9aaa5b10e7623ff4d10a9b891a71c3

There are 9 contracts/libraries in scope.

After the initial code audit, Nereus Finance team applied a number of updates which can
be identified by the following git commit hash:

TBD

Additional verification was performed after that.

2. DISCLAIMER. The code audit makes no statements or warranties about utility of the code,
safety of the code, suitability of the business model, regulatory regime for the business
model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status. The code audit documentation below is for internal management
discussion purposes only and should not be used or relied upon by external parties
without the express written consent of Ambisafe.

3. EXECUTIVE SUMMARY. All the initially identified, minor and above, severity issues were
fixed and are not present in the final version of the contracts. There are no known
compiler bugs for the specified compiler version (0.6.12), that might affect the contracts’
logic. There were 0 critical, 0 major, 4 minor, 3 informational and optimizational issues
identified in the initial version of the contracts. The non-informational issues found in the
contract were not present in the final version. They are described below for historical
purposes.
Modifications of the DegenBox mainly consist of introducing a pool indexing.



4. CRITICAL BUGS AND VULNERABILITIES. No critical bugs or vulnerabilities were found.

5. INITIAL FIXED ISSUES LINE BY LINE REVIEW.

5.1. DegenBox, line 772. Minor, the deposit() function does not validate
MINIMUM_SHARE_BALANCE condition in the case when the user specifies
how many shares to mint. This allows a malicious actor to set a minimum deposit
limit for a token to some high value that will restrict some users from depositing.

5.2. DegenBox, line 902. Minor, the transferMultiple() function first adds the
balance to the receiver then subtracts from the sender. In case the sender and
receiver are the same address then a malicious actor could emit fake LogTransfer
events not having any balance at all.

5.3. DegenBox, line 929. Minor, the flashLoan() function does not verify if the token
was already deposited or not, allowing a malicious actor to increase the
totals[token].elastic value while keeping the totals[token].base equaling zero.

5.4. DegenBox, line 964. Minor, the batchFlashLoan() function does not verify if the
token was already deposited or not, allowing a malicious actor to increase the
totals[token].elastic value while keeping the totals[token].base equaling zero.

5.5. PermissionManager, line 22. Note, the permit() function does not emit any
events.

5.6. PermissionManager, line 37. Note, the revoke() function does not emit any
events.

5.7. WhitelistManager, line 10. Note, the setCheckStatus() function does not emit any
events.

6. REMAINING ISSUES LINE BY LINE REVIEW.

Oleksii Matiiasevych


