
Nereus LP Staking v2 Contracts Code Audit and Verification by Ambisafe Inc.

February, 2023

Oleksii Matiiasevych

1. INTRODUCTION. Nereus Finance. requested Ambisafe to perform a code audit of the LP
Staking v2 contracts. The contracts in question can be identified by the following git
commit hash:

033deeec4e9b73a0a93d88034734f4e3274e8edf

The scope of the audit is Staking contract and interface.

During the initial code audit, Nereus Finance team applied a number of updates which
can be identified by the following git commit hash:

8b0473691dba3640f028aa89be730361737a7fcf

Additional verification was performed after that.

2. DISCLAIMER. The code audit makes no statements or warranties about utility of the code,
safety of the code, suitability of the business model, regulatory regime for the business
model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status. The code audit documentation below is for internal management
discussion purposes only and should not be used or relied upon by external parties
without the express written consent of Ambisafe.

3. EXECUTIVE SUMMARY. There are no known compiler bugs for the specified compiler
version (0.8.17), that might affect the contracts’ logic. There were 0 critical, 0 major, 0
minor, 34 informational and optimizational findings identified in the initial version of the
contracts. Some of the findings were addressed while others remained acknowledged.

4. CRITICAL BUGS AND VULNERABILITIES. No critical bugs or vulnerabilities were found.



5. INITIAL LINE BY LINE REVIEW. FIXED FINDINGS.

5.1. IStaking, line 9. Note, the UserInfo.lastRewardUpdateTime property is not
used.

5.2. Staking, line 12. Note, the treasuryAddress state variable could be made public.

5.3. Staking, line 13. Note, the rewardTokensPerSecond state variable is not used.

6. VERIFICATION LINE BY LINE REVIEW. ACKNOWLEDGED FINDINGS.

6.1. Staking, line 15. Optimization, the REWARD_TOKEN_PRECISION state
variable could be made constant.

6.2. Staking, line 39. Optimization, the REWARD_TOKEN_PRECISION logic
could be redesigned to only be used for division on claim, when the reward
tokens are moved.

6.3. Staking, line 55. Optimization, the updatePoolRewards() reads pool properties
from storage multiple times.

6.4. Staking, line 56. Optimization, the updatePoolRewards() reads
currentEmissionPoint value from storage multiple times.

6.5. Staking, line 57. Optimization, the updatePoolRewards() reads
emissionSchedule[].endTime value from storage twice.

6.6. Staking, line 76. Note, the updatePoolRewards() function has an excessive code
duplication based on the emission points equality condition. The loop covers the
equal case as well and could be used every time. Only the update of the
currentEmissionPoint storage variable could be avoided if the emission points
are equal.

6.7. Staking, line 125. Note, the deposit() function uses standard transferFrom()
function which might fail on a non-comlpiant ERC20 tokens, consider using
safeTransferFrom() function instead.

6.8. Staking, line 133. Optimization, the deposit() function reads staker.amount value
from storage multiple times.

6.9. Staking, line 139. Optimization, the deposit() function reads pool.totalSupply
value from storage multiple times.

6.10. Staking, line 142. Optimization, the deposit() function reads
pool.accumulatedRewardsPerShare value from storage multiple times.



6.11. Staking, line 158. Optimization, the withdraw() function reads
pool.accumulatedRewardsPerShare from storage twice.

6.12. Staking, line 166. Note, the withdraw() function uses standard transferFrom()
function which might fail on a non-comlpiant ERC20 tokens, consider using
safeTransferFrom() function instead.

6.13. Staking, line 174. Optimization, the withdraw() function reads
poolStakers[msg.sender].amount from storage twice.

6.14. Staking, line 179. Note, the withdraw() function uses standard transfer()
function which might fail on a non-comlpiant ERC20 tokens, consider using
safeTransfer() function instead.

6.15. Staking, line 196. Note, the emergencyWithdraw() function uses standard
transfer() function which might fail on a non-comlpiant ERC20 tokens, consider
using safeTransfer() function instead.

6.16. Staking, line 207. Optimization, the claim() function reads
pool.accumulatedRewardsPerShare from storage twice.

6.17. Staking, line 219. Optimization, the claim() function reads
poolStakers[msg.sender].amount from storage twice.

6.18. Staking, line 222. Note, the claim() function uses standard transferFrom()
function which might fail on a non-comlpiant ERC20 tokens, consider using
safeTransferFrom() function instead.

6.19. Staking, line 260. Optimization, the getClaimableRewards() function
excessively updates the lastRewardUpdateTime local variable and then returns.

6.20. Staking, line 264. Note, the getClaimableRewards() function has an excessive
code duplication based on the emission points equality condition. The loop covers
the equal case as well and could be used every time.

6.21. Staking, line 314. Note, the calculateAccruedRewardsFromTo() function could
return wrong results in case totalSupply went to 0 for some time after the
fromDate.

6.22. Staking, line 323. Optimization, the calculateAccruedRewardsFromTo()
function should break the loop in case startTime >= toDate, because later
emission schedules will have startTime even higher.

6.23. Staking, line 357. Optimization, the getTotalUnclaimedRewardsForDate()
could return calculateAccruedRewardsFromTo(poolStartTime, date) and
avoid extra getTotalUnclaimedRewards() call.



6.24. Staking, line 404. Optimization, the editEmissionSchedule() function excessively
invokes onlyOwner() modifier, while it is already present in the
addEmissionsPoints() function.

6.25. Staking, line 413. Note, the editEmissionSchedule() function will revert with an
underflow if called when the emissionSchedule list is still empty.

6.26. Staking, line 439. Optimization, the calculateEmissionPoint() function reads
emissionSchedule.length value from storage multiple times.

6.27. Staking, line 455. Optimization, the calculateEmissionPoint() function reads
emissionSchedule[i] value from storage twice for every loop iteration except for
the first and last.

6.28. Staking, line 477. Optimization, the getEmissionPoints() function fromPoint >=
0 condition is always true.

6.29. Staking, line 505. Note, the getEmissionPoint() function will revert if the
emissionSchedule list is empty.

Oleksii Matiiasevych


