
Nereus Liquidator Contracts Code Audit and Verification by Ambisafe Inc.

November, 2022

Oleksii Matiiasevych

1. INTRODUCTION. Nereus Finance. requested Ambisafe to perform a code audit of the
Liquidator and related contracts. The contracts in question can be identified by the
following git commit hash:

d57d0003438fe4add0bd76d63dd48c81723d7d34

The scope of the audit is Liquidator and CRVTokenUSDCLiquidationStrategy contracts.

During the initial code audit, Nereus Finance team applied a number of updates which
can be identified by the following git commit hash:

ffeb384f986b03933eb4448c788942531504e1be

Additional verification was performed after that.

2. DISCLAIMER. The code audit makes no statements or warranties about utility of the code,
safety of the code, suitability of the business model, regulatory regime for the business
model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status. The code audit documentation below is for internal management
discussion purposes only and should not be used or relied upon by external parties
without the express written consent of Ambisafe.

3. EXECUTIVE SUMMARY. There are no known compiler bugs for the specified compiler
version (0.8.0), that might affect the contracts’ logic. There were 0 critical, 1 major, 2
minor, 6 informational and optimizational issues identified in the initial version of the
contracts. Some of the issues were addressed while others remained acknowledged.

4. CRITICAL BUGS AND VULNERABILITIES. No critical bugs or vulnerabilities were found.



5. INITIAL LINE BY LINE REVIEW. FIXED FINDINGS.

5.1. Liquidator, line 145. Minor, the switchLiquidationStrategy() function could
activate an empty strategy.

5.2. Liquidator, line 199. Optimization, the liquidate() function reads
_tokenLiquidationStrategy struct from storage multiple times. Consider reading
it into memory once instead.

5.3. Liquidator, line 257. Note, the swap() function could be used by a manager to
drain the contract.

6. VERIFICATION LINE BY LINE REVIEW. ACKNOWLEDGED FINDINGS.

6.1. Liquidator, line 22. Note, the MAX_INT could be defined as type(uint256).max
for better readability.

6.2. Liquidator, line 182. Note, the liquidate() function could revert with underflow if
the BentoBox collateral base is smaller than minimumBalanceInBentoBox.

6.3. Liquidator, line 191. Minor, in the liquidate() function the amount is confused
with shares in the bentoBox.withdraw() call. This doesn’t have negative effects
while the ratio of shares/underlying in the BentoBox is 1:1.

6.4. Liquidator, line 261. Note, the swap() function could lose the revert reason.
Consider doing assembly { revert(add(result, 32), result) } instead.

6.5. Multicall, line 18. Note, the multicall() function could lose the revert reason.
Consider doing assembly { revert(add(result, 32), result) } instead.

6.6. CRVTokenUSDCLiquidationStrategy, line 36. Major, the applyStrategy()
function is susceptible to a sandwich attack due to the call of
remove_liquidity_one_coin() with minOut specified as 0.

Oleksii Matiiasevych


