
Nereus Protocol Contracts Code Audit by Ambisafe Inc.

March, 2022

Oleksii Matiiasevych

1. INTRODUCTION. Nereus Finance. requested Ambisafe to perform a code audit of the
contracts implementing Nereus Protocol. The contracts in question can be identified by
the following git commit hash:

bbf2bde432c23bf0ee535c4bdccde12f5a1130cd

The scope of the audit is the modifications of Aave Protocol V2 and an additional 5
contracts located in the staking folder.

After the initial code audit, Nereus Finance team applied a number of updates which can
be identified by the following git commit hash:

5329684cc602c16eca6a8816dfaaa2462c31097d

Additional verification was performed after that.

2. DISCLAIMER. The code audit makes no statements or warranties about utility of the code,
safety of the code, suitability of the business model, regulatory regime for the business
model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status. The code audit documentation below is for internal management
discussion purposes only and should not be used or relied upon by external parties
without the express written consent of Ambisafe.

3. EXECUTIVE SUMMARY. All the initially identified, minor and above, severity issues were
fixed and are not present in the final version of the contracts. There are no known
compiler bugs for the specified compiler version (0.6.12), that might affect the contracts’
logic. There were 0 critical, 1 major, 1 minor, 23 informational and optimizational issues
identified in the initial version of the contracts. The non-informational issues found in the
contract were not present in the final version. They are described below for historical
purposes.
Modifications of the Aave Protocol V2 mainly consist of introducing a liquidator role,



making the liquidationCall() function only accessible to certain addresses, and splitting
the protocol profits between the treasury and fee distributor. Changes also allow
emergency admin to perform pool configuration actions.

4. CRITICAL BUGS AND VULNERABILITIES. No critical bugs or vulnerabilities were found.
5. INITIAL LINE BY LINE REVIEW.

5.1. UiPoolDataProviderV2, line 220. Note, the bytes32ToString function for loop
condition could be optimized to 'i < bytesArray.length'.

5.2. LendingPool, line 89. Note, in the expression 'liquidators[msg.sender] == true'
there is no point in comparing a boolean value to true, just use the boolean value
itself.

5.3. LendingPool, line 94. Note, the LendingPoolConfigurator role is set to the
LendingPoolConfigurator contract by default. That contract in turn is controlled
by the LendingPoolAdmin role, but lacks functionality that would call
liquidators management functions in the LendingPool contract. Consider
changing the management access rights to the LendingPoolAdmin role directly,
or adding the necessary functions to the LendingPoolConfigurator contract.

5.4. ChefIncentivesController, line 37. Optimization, the poolConfigurator variable
could be made immutable.

5.5. ChefIncentivesController, line 39. Optimization, the rewardMinter variable could
be made immutable.

5.6. ChefIncentivesController, line 56. Typo, poitns should be points.

5.7. ChefIncentivesController, line 58. Note, misleading comment about startTime
variable. It is not a block number but a timestamp.

5.8. MasterChef, line 36. Optimization, the poolConfigurator variable could be made
immutable.

5.9. MasterChef, line 38. Optimization, the rewardMinter variable could be made
immutable.

5.10. MasterChef, line 55. Typo, poitns should be points.

5.11. MasterChef, line 57. Note, misleading comment about startTime variable. It is not
a block number but a timestamp.

5.12. MerkleDistributor, line 23. Note, instead of '86400 * 365' consider using '365
days' for better readability.



5.13. MerkleDistributor, line 24. Note, instead of '86400 * 7' consider using '7 days' for
better readability.

5.14. MerkleDistributor, line 26. Optimization, the rewardMinter could be made
immutable.

5.15. MultiFeeDistribution, line 51. Optimization, the treasury variable could be made
immutable.

5.16. MultiFeeDistribution, line 59. Note, instead of '86400 * 7' consider using '7 days'
for better readability.

5.17. MultiFeeDistribution, line 162. Optimization, use rewards[i].token instead of
rewardTokens[i] to avoid excessive storage reads.

5.18. MultiFeeDistribution, line 175. Minor, the unlockedBalance function should use
user parameter instead of msg.sender.

5.19. MultiFeeDistribution, line 294. Major, _updateReward(user) should be executed
in the beginning of the mint() function, otherwise the user will get extra rewards.

5.20. MultiFeeDistribution, line 384. Note, instead of '86400' consider using '1 day' for
better readability.

5.21. MultiFeeDistribution, line 509. Note, the RewardAdded event is not used.

5.22. MultiFeeDistribution, line 513. Note, the RewardsDurationUpdated event is not
used.

5.23. TokenVesting, line 10. Note, instead of '86400 * 365' consider using '365 days' for
better readability.

5.24. TokenVesting, line 13. Optimization, the minter variable could be made
immutable.

5.25. TokenVesting, line 14. Optimization, the owner variable could be made
immutable.

Oleksii Matiiasevych


